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Chapter 1

Introduction

1.1 Motivation

In the recent years, autonomous driving has gained appreciable traction in the AI commu-

nity. Autonomous driving is expected to offer safe & efficient mobility on congested traffic

lanes. To develop a rule-based categorical driving policy is of utmost difficulty since the

number of scenarios or the traffic patterns that a vehicle can face is exponentially large

and hence hand-crafting a rule-based controller for each of these myriad scenarios is not a

viable option. A machine learning approach is needed to mitigate these shortcomings of a

rule based controller to extend the behavior of the vehicle to unknown situations. Rein-

forcement Learning (RL) [8] can be used to find optimal control policies that can adapt to

unknown traffic patterns.

Over the past decade, RL has produced commendable successes in control tasks such as

AlphaGo [9] (defeated the world champion of the game Go), Atari [10], AlphaFold [11]

( solved a 50 year old problem of protein folding). This attracted the transportation

community in using RL for complex tasks like traffic signal control [12], ramp-metering

[13], forward driving, lane changing behavior, etc. Most of these studies, focus primarily

on finding the optimal driving policy through a single vehicle that acts as a reinforcement
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learning agent. But this is seldom the case in real life scenarios where multiple vehicles are

being driven on any given road. Multi-Agent Reinforcement Learning (MARL) [5] tackles

this problem of finding the optimal strategy in the presence of multiple vehicles acting as

reinforcement learning agents.

My research branches out in two different directions. First is to design a novel algorithm

for coordinated behavior on highways using MARL. Second is to use coordinated MARL

to dissipate traffic congestion waves in ring road setups.

1.2 Organization of The Report

This chapter provides the motivation for the rest of the thesis. Chapter 2 provides a detailed

review and background on the current work and explains preliminary concepts needed to

comprehend the results. Chapter 3 discusses about agents in highways and presents results

on collision avoidance. Chapter 4 discusses about agents in ring roads and presents results

on traffic shock wave mitigation. Finally, Chapter 5 concludes with some directions into

the future works.
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Chapter 2

Review of Prior Works

2.1 Markov Decision Process & Reinforcement Learning

Reinforcement learning is a class of machine learning algorithms that is used for learning

sequential decision making behavior. In RL literature we have something called an agent

i.e the learner who is trying to accomplish a task and we have an environment with which

the agent interacts to achieve a specific goal. Every problem has an environment in which

the agent acts and based on this action the environment returns the next state the agent

should be in and the reward obtained for the action that the agent chose. The goal of the

agent is to choose the actions that maximizes the cumulative reward that it obtains on the

long run. Every RL problem includes this behaviour loop as shown in the Fig 2.4.

Mathematically, RL problems can be formulated as Markov Decision Processes (MDP).

MDP is a 5-tuple < S,A,R, P, γ > defined as follows:

1. State Space (S): A finite set of states. S ∈ Rd where d is the size of the feature set

that represents the environment.

2. Actions (A): A finite set of actions available to agent.

3



Fig. 2.1: RL Behavior Loop [1]

3. Transition Probability (P): An (|S| × |S|) matrix indicating the transition prob-

ability from one state to another after performing a particular action. P (s, a, s′) :

S × A→ [0, 1].

4. Reward Function (R): A function that provides scalar reward to an agent upon

performing a specific action. R : S × A→ R.

5. Discount Factor (γ): Parameter indicating how far the agent should look ahead

before making a decision. γ ∈ [0, 1]. A value of 1 indicates that the agent is looking

ahead and basing its actions on future rewards whereas a value of 0 indicates that

it is just looking at immediate rewards. Rewards are thus discounted by this factor

of γ not only to choose between future and immediate rewards but also to make the

problem of infinite time horizon, i.e the policy of the agent does not change with time

and because of this the amount of rewards that the agent receives must be moderated

i.e it should not blow up.

Three more important terms that need to be introduced are:

1. Policy (π): This is equivalent to the agent’s brain. The policy of an agent is its

behavior. The policy is a map from the states of the environment to the action set
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of the agent π : S → A. Therefore if the agent is in some state say s then the agent

will take the action a where a = π(s).

2. Value Function (V π(s)): Value Function gives a relative measure of how good a

state is on the long-term. Value of a state is defined to be the expected return starting

from that state. Return (Gt) is defined to be the total discounted reward obtained

from time step t.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γ∞R∞ (2.1)

V π(s) = Eπ[Gt|St = s] (2.2)

3. Action Value Function (Qπ(s, a)): Action Value Function gives the relative mea-

sure of how good an action is from a particular state on the long-term. This is defined

as the expected return starting from a state and taking a particular action.

Qπ(s, a) = Eπ[Gt|St = s, At = a] (2.3)

The goal of reinforcement learning is to maximize the expected discounted reward at any

given state i.e it needs to obtain the maximum possible value at every state. The optimal

policy can be obtained by value iteration and policy iteration algorithms [14]. This requires

the model of the network i.e it requires knowledge of transition probabilities. But RL

deals with model free problems i.e the RL algorithms try to approximate the transition

probabilities of the environment by collecting samples from the environment. Model-free

reinforcement algorithms are further classified into value based and policy based methods.

5



2.2 Q-Learning

Q-Learning is a value-based model-free RL algorithm that finds the Q values (action values)

of the states by iteratively collecting samples from the environment and updating the Q

value table. The Q value table is a matrix of size |S| × |A| which stores the corresponding

Q values of Q(s,a). The Q Learning update equation is as follows:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (2.4)

where, s′, a′ are the next state, action respectively and α is the stepsize.

Below is the algorithm for Q-Learning using Q value tables.

Algorithm 1: Q-Learning Algorithm

1 Initialise α, γ
2 Q(s,a) → 0
3 Sample action a ∼ πθ
4 for Episodes = 1, 2, 3... do
5 Randomly select a state s
6 while s 6= sgoal do
7 a ∼ π(s)
8 s′, r ← transition(s, a)
9 Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

10 s = s′

2.2.1 Deep Q Network (DQN)

A major drawback with using Q value tables is that it needs to store all the Q values

in memory. This might seem trifling for problem with small state space but complex

problems can see state space in the order of 104 to 108. Therefore in order to overcome this

shortcoming we have moved to the use of neural networks to approximate these Q values

instead of storing them.
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Fig. 2.2: Deep Q Network [2]

2.2.2 Double Deep Q Network

In the vanilla DQN, the Q targets keep changing every iteration, which means that the Q

values that we are trying to estimate have moving Q targets. It is better if the Q targets

stay constant for a while so that the Q values can catch up to those. This problem is

called the maximization bias and can be solved using a second Q network solely for storing

the target weights and updating the weights to the online Q network according to a fixed

frequency. The following is the update equation for Double DQN:

Qonline (st, at; θi)← Rt+1 + γmaxa′Qtarget (st+1, a
′; θi−1) (2.5)

Qtarget provides the estimated Q value for the next iteration using the stored weights and

the action to be performed is taken from Qonline by taking an argmax on action space. θi

denotes the weights of the Q network in the ith iteration.
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Fig. 2.3: Double Deep Q Network [3]

2.2.3 Dueling Deep Q Network

Dueling DQN splits the Q value into Value Function V(s) and the Advantage Action Func-

tion A(s,a). Value Function gives the measure of how rewarding a state is where as the

advantage action function gives us the measure of the advantage we get by choosing a

particular action. The following is the Q value update equation:

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
(2.6)

where A denotes the number of actions in the action set.

Fig. 2.4: Vanilla DQN (top), Dueling Deep Q Network (bottom) [4]
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2.3 Policy Gradient Methods

Actor Critic is an RL algorithm that falls under the wing of Policy Gradient Methods.

Policy Gradient Methods outperform value-based methods in Model-Free contexts because

they can readily learn stochastic policies and are very efficient in MDPs with continuous

state spaces. In policy gradient methods the policy π(a|s) is parametrized i.e (πθ(a|s))

where a is action and s is the state.

πθ(a|s) = P [a|s, θ] (2.7)

The goal of policy gradient methods is to obtain the optimal θ given πθ(a|s).

To evaluate the performance of the policy we have an objective function J(θ) which

essentially give us a measure of how good the policy is compared to other policies based

on the parameter θ.

J(θ) = Vπθ(s) (2.8)

In the above equation, Vπθ(s) denotes the value obtained upon following the policy πθ. Now

the goal is to find the θ that maximizes J(θ) which can be done using gradient ascent.

θ = θ + α
∂J(θ)

∂θ
(2.9)

where α is the step size. Now according to the policy gradient theorem we have,

∇θJ(θ) = Eπθ [∇θlog(πθ(a|s))δ] (2.10)

where,

δ = R(s, a) + γQπ
w(s′, a′)−Qπ

w(s, a) (2.11)
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Using the above equations our policy gradient step becomes,

θ = θ + α∇θlog(πθ(a|s))δ (2.12)

We lose the expectation since we follow an iterative algorithm and will be taking averages

instead. The Q values in this equation also needs to be evaluated on the current policy

which needs a separate neural network. These Q values gives us a measure of the quality

of the policy. In essence the critic updates Q-value function weights, and the actor updates

policy parameters θ guided by the Q values from the critic.

Algorithm 2: Q Value Actor Critic

1 Initialise s, θ, w

2 Sample action a ∼ πθ

3 for Episodes = 1, 2, 3... do

4 while s 6= sgoal do

5 s′, r ← (s, a)

6 a′ ∼ πθ(.|s′)

7 δ ← r + γQπθ
w (s′, a′) - Qπθ

w (s, a)

8 θ ← θ + α∇θlog(πθ(a|s))δ

9 w ← w + βδφ(s, a)

10 a← a′

11 s← s′

2.4 Intelligent Driver Model (IDM)

IDM is a car following model that provides the dynamic position and velocity of a vehicle.

Consider a single vehicle i and the vehicle in front of it f , and let xi, xf denote the position

at a time t of the vehicles i, f respectively and vi, vf denote the velocity at time t of
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the vehicles i, f respectively. Let li, lv be the length of the vehicles i, f respectively. Net

distance si = xf −xi− lf and the approaching rate ∆vi := vi−vf . The dynamics are hence

defined by the following ordinary differential equations:

ẋi =
dxi
dt

= vi (2.13)

v̇i =
dvi
dt

= a

(
1−

(
vi
v0

)δ
−
(
s∗ (vi,∆vi)

si

)2
)

(2.14)

s∗ (vi,∆vi) = s0 + viT +
vi∆vi

2
√
ab

(2.15)

The parameters that can be changed here are v0, s0, T, a, b which are described as follows:

1. v0 (desired velocity): The velocity to drive in traffic free case.

2. s0 (minimum spacing): This is the desired net distance value i.e the minimum distance

to the front vehicle.

3. T (desired headway): Minimum time to the front vehicle

4. a (acceleration): Maximum acceleration of the vehicle

5. b (braking deceleration): Maximum braking deceleration

6. δ (acceleration exponent): This is usually set to 4.

2.5 FollowerStopper Controller

As the name suggests, this model based controller commands a desired velocity U whenever

it is within a safe distance from lead vehicle, and it commands a safer lower velocity

vcmd < U whenever safety is required. Using the gap 4x and the relative velocity 4v =

vlead − vagent, the controller model is defined by the following equations:
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vcmd =



0 if ∆x 6 ∆x1

v ∆x−∆x1
∆x2−∆x1

if ∆x1 < ∆x 6 ∆x2

v + (U − v) ∆x−∆x2
∆x3−∆x2

if ∆x2 < ∆x 6 ∆x3

U if ∆x3 < ∆x.

(2.16)

where v = min(max(vlead, 0), U) and 4x1,2,3 is defined as follows:

∆xk = ∆x0
k +

1

2dk
(∆v−)2 , for k = 1, 2, 3 (2.17)

2.6 Proportional Integral Controller

The PI controller decides upon a command velocity vcmd such that for small gaps the agent

should follow the lead vehicle and for large gaps, the agent should catch up to the lead

vehicle. The desired velocity is calculated as a temporal average (U = 1
m

∑m
j=1 v

agent
j ) of

the agent’s velocity. Generally velocity history length (m) is taken to be 38s. This desired

velocity is translated into a target velocity by the following equation:

vtarget = U + vcatch ×min

(
max

(
∆x− sl
su − sl

, 0

)
, 1

)
(2.18)

where, sl is the lower gap limit and su is the upper gap limit. The final vcmd is calculated

using vtarget and vlead by the following equation:

vcmd
j+1 = βj

(
αjv

target
j + (1− αj) vlead

j

)
+ (1− βj) vcmd

j (2.19)

where αj, βj are weights that depend on the gap in front as follows:

βj = 1− 1

2
αj (2.20)
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αj = min

(
max

(
∆x−∆xs

γ
, 0

)
, 1

)
(2.21)

where 4xs is safety distance and the parameter γ controls the rate of transition of the

weight α from 0 to 1.

2.7 Multi Agent Reinforcement Learning

An intuitive approach to find optimal strategies for a multi agent system is to train the

agents independently, i.e to learn the decentralized policy. Approaches to independent

agent learning [15] are prone to instability that arises from the non-stationarity of the

environment created by simultaneous learning agents.

The flipside of this switch is to train the agents in a centralized approach with joint action

and state spaces. This can handle the non-stationarity problem and also aids in agent

co-ordination. Centralized approach bottlenecks in scaling to a higher dimensional state

and action space. Recent works have developed a hybrid approach that exploits the co-

ordination of centralized training with decentralized execution.

2.7.1 MDP

The MDP for a cooperative multi-agent system can be abstracted by the tuple 〈S,A, T, r,X,O, n, γ〉

where s ∈ S denotes the state of the environment. Each agent i ∈ 1, ..., n chooses

an action ai ∈ A forming a joint action a ∈ A. These actions taken by each agent

causes a transition in the environment according to the transition probability matrix

T (s′ | s,u) : S × U × S → [0, 1]. All the agents follow the same joint reward function

r(s, a) : S × A → R, and the discount factor is as usual γ ∈ [0, 1). Since our agent ob-

servations are partial and each agent draws individual observations x ∈ X following the

observation function O(s, a) : S × A → X. Each agent maintains a history of actions

and observation τ i ∈ Y ≡ (X × A)∗ upon which the the stochastic policy is conditioned
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πi (ai | τ i) : Y× A→ [0, 1].

2.7.2 Distributed Learning

Distributed Learning in reinforcement learning agents implies the use of multiple agents to

train a single policy. Multiple agents in the system follow the same policy and reinforce

this singular policy through experiences from multiple agents.

Fig. 2.5: Distributed Learning Setup [5]

2.7.3 Fully Independent Learning

Most commonly applied method in multi-agent reinforcement learning is the independent

reinforcement learning where the multi-agent problem is decomposed into a collection of

parallel single-agent problems that share the same environment. Non-stationarity is in-

troduced into the environment because of independent learners since from each learner’s

perspective the environment is dynamic because of other independent learners. This ap-

proached does not have convergence guarantees even in the limit of infinite exploration.
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Fig. 2.6: Independent Learning Setup [5]

2.7.4 Centralized Training Decentralized Execution (CTDE)

In CTDE, the learning algorithm has access to local action observation histories because

of centralized training but the policy is conditioned only on its own actions because of the

decentralized execution. The following are the most promising models that are implemented

with CTDE.

2.7.5 Value Decomposition Networks (VDN)

Value Decomposition Networks [6] aim to learn the joint-action value function Qtot(τ , a)

where a is a joint action and τ ∈ Y ≡ Yn is the joint action-observation history. VDN’s

claim is that it can decompose the joint action value function into individual value functions

that condition on individual action-observation histories.

Qtot(τ , a) =
n∑
j=1

Qj

(
τ j, aj; θj

)
(2.22)

2.7.6 QMIX

QMIX [7], like VDN is a CTDE method but can represent a much richer class of action-value

functions. QMIX represents the Qtot by an architecture that consists of agent networks,

mixing network and a set of hypernetworks [16]. The architecture contains one network
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Fig. 2.7: Value Decomposition Architecture for multi-agent system (2 agents) [6]

(DRQN [17]) per agent to represent its value function which receives the current observation

and the last action as input at each time step. Mixing network is a feed-forward neural

network that takes the agent network outputs and mixes them producing the values of Qtot.

The weights of mixing network are produced separately by hypernetworks.

Fig. 2.8: QMIX Architecture [7]

2.8 Conclusion

This chapter provides details about the preliminaries needed to understand the rest of the

thesis. It describes the algorithms that are used and the basic introduction of reinforcement

learning and markov decision processes. In the next chapter we discuss the setup of agents

in highway and the training results.
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Chapter 3

Agent in Highway

3.1 MDP Formulation

3.1.1 About the simulator

The simulator is built using PyGame library [18] and a snippet of the simulator is shown

in Fig 3.2. The simulator consists of two lanes and the agent is in red color. All the other

vehicles in the simulation follow the IDM model and don’t swich lanes and are generated

according to a random seed. The simulation runs at 10 FPS.

3.1.2 Environment Setting

The following are the IDM parameters used to create the traffic simulation:

Light Traffic Parameters
v0 16.67 m/s
s0 2m
T 1.5s
a 1.2 m/s
b 3 m/s
δ 4

Table 3.1: Light IDM Parameters
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Medium Traffic Parameters
v0 16.67 m/s
s0 2m
T 1.5s
a 1.2 m/s
b 3 m/s
σv0 3.75m/s
σs0 0.2m
δ 4

Table 3.2: Medium IDM Parameters

Dense Traffic Parameters
v0 16.67 m/s
s0 2m
T 1.5s
a 1.2 m/s
b 3 m/s
σv0 5.75m/s
σs0 0.4m
δ 4

Table 3.3: Dense IDM Parameters

3.1.3 MDP

The MDP for the problem is as follows:

1. State Space: A state in this environment is represented from the perspective of the

agent. The feature set has a size of d = 9 i.e S ∈ R9. Therefore the feature of a state

represented as φ(s) = {lane, velocity,GF,GB, collision,OGF,OGB,OFV,OBV }.

See Fig 3.2.

• lane: This feature indicates the lane number in which the agent is currently in,

lane ∈ {1, 2}.

• velocity: This feature indicates the velocity of the agent, velocity ∈ [0, 22] and

velocity ∈ Z+.

• GF: Gap Front is the distance to the front vehicle.
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Fig. 3.1: RL Loop

• GB: Gap Back is the distance to the vehicle behind.

• collision: Collision flag indicates whether the agent collided with the environ-

ment vehicles or not, collision: O ∈ {0, 1}.

• OGF: Other lane gap front indicates the distance to the front vehicle on the

lane in which agent is not present.

• OGB: Other lane gap back indicates the distance to the back vehicle on the

lane in which agent is not present.

• OFV: Other lane front vehicle velocity indicates the velocity of the vehicle in

front of the agent on the lane in which the agent is not present.

• OBV: Other lane back vehicle velocity indicates the velocity of the vehicle in

back of the agent on the lane in which the agent is not present.

2. Actions: {Accelerate, Decelerate, Shift lane, Do Nothing}

3. Transition Probability: Unknown, hence it is a model free RL problem.

4. Reward Function: Linear function of states R(s) where s ∈ S. R(s) = θT .φ(s).
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θ ∈ R9 are the reward weights.

5. Discount Factor: γ = 0.99

The task that we are trying to solve is for the agent to move past all the environment

vehicles without colliding.

3.2 Single Agent Setup

The pygame simulator has been integrated with the stable baselines 2 library [19]. Stable

baselines offers a plethora of RL algorithms out of which the DQN implementation is used

to train the single agent. Stable baselines 2 uses tensorflow 1.15 as the backend in building

the neural networks.

3.2.1 Training DQN Agent

The following results are trained on medium traffic environment setting since it can easily

generalize to light and dense traffic scenarios. For every collision the episode is ended with

a negative reward signal. The following are the hyperparameters used to train the DQN

agent:

HyperParameters
Total Training TimeSteps 100000
Total Number of Episodes 150 (600 timesteps per episode)
Deep Q Network Size (256, 256, 256)
Replay Buffer Size 100000
Discount Factor 0.99
Batch Size 128
Learning Rate 0.0001
Training Frequency 4
Target Network Update Frequency 1000
Agent Max Velocity 22 m/s
Reward Weights (θ) [0, 0.2, 0, 0, -400, 0, 0, 0, 0]

Table 3.4: DQN Hyperparameters
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Fig. 3.2: (a) GF: Gap front (b) GB: Gap back (c) OGF: Other Lane front vehicle distance
(d) OGB: Other Lane back vehicle distance
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The reward weights indicate that the reward function is as follows:

R(s) = θT .φ(s) =



0

0.2

0

0

−400

0

0

0

0



.φ(s) = 0.2× velocity + (−400)× collision (3.1)

Results

The following are the average reward plot on all the types of DQN on medium traffic

scenario. It is quite evident that Dueling DQN performs better than Double DQN and

Vanilla DQN through the average reward plot and the collision plot.

Fig. 3.3: Average Reward Plot
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Fig. 3.4: Number of Collisions Plot

3.2.2 Simulations

The simulations can be found in the following drive link. The code is in a private repository,

so please contact me so that I can provide access. Git Link

3.2.3 Conclusion

In this chapter we provide the MDP framework for the highway RL problem and provide a

brief detail about the simulator used and the environment settings applied. We also discuss

the results from the DQN agent on this environment and provide average reward plots of

different types of DQN and collision rate. We can see from the simulation video that it is

able to avoid collision in most cases.
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Chapter 4

Agent in Ring Roads

4.1 MDP Formulation

The MDP for the problem is as follows:

1. State Space: A state in this environment is represented from the perspective of the

agent. Although the full state information is available to the learning agent, it is

practical to provide partial observations that the learning agent can physically sense.

Therefore the feature of a state is represented as φ(s) = { Vi
V0

, Ẋi
V0

, Xi
Ltrack

}, where i is

the index of the learning agent, Vi corresponds to the velocity of the learning agent, V0

corresponds to the max velocity of any vehicle in the environment, Ltrack corresponds

to the track length, and Ẋi = Vi−1 − Vi.

2. Actions: {Accelerate, Decelerate}

3. Transition Probability: Unknown, hence it is a model free RL problem.

4. Reward Function: Linear function of states R(s) where s ∈ S.

5. Discount Factor: γ = 0.99

The task that we are trying to solve is to develop an agent behaviour that can reduce the

traffic congestion waves in ring road systems.
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4.2 Experiment Setup

The experiment contains 22 vehicles of which there are multiple autonomous vehicles along

with human driven vehicles. The autonomous vehicles are governed by certain model based

and learned control laws whereas the human driven vehicles are governed by IDM dynamics

with an additional Gaussian acceleration noise of N (0, 0.2). The learning agents receive

partial observations which restricts the observations to the information that can be directly

sensed. All vehicles are equidistantly placed around the circular track before beginning the

simulation with an initial velocity of 0m/s.

4.2.1 Training Workflow

Each training episode is of 300s with a warmup period of 75s. The warmup period overrides

the control law of the autonomous vehicle with an IDM model. This allows for random-

ization of the initial state for the formation of stop-and-go-waves. In order to prevent

overfitting to a singular track length, the lane density is randomly chosen from a range of

traffic densities by uniformly sampling the total number of vehicles. In order for the learn-

ing agent to prevent crashes, certain fail-safe mechanisms have been implemented that

introduces accelerations bounds.

4.2.2 Evaluation Workflow

Each evaluation episode is of 600s where for the first 300s, the control laws of all the

learning agents are overridden by IDM control to produce stop-and-go waves, and then the

control is switched to the corresponding controller until the end of evaluation.

4.2.3 Reward Function

The reward function takes into account two important factors that aid in reducing the

traffic waves, i.e the average velocity of the system and the control cost of the action. The
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rewarding nature of the two metrics is to positively reward increase in average velocity and

penalize high accelerations. Therefore the reward function is as follows:

r(s, a) =
1

n

∑
i

vi − α
1

m

∑
j∈[m]

|aj| (4.1)

where α = 0.1.

4.3 Control Laws

4.3.1 Model - Based Controller

Intelligent Driving Model

v0 s0 T a b δ noise
30 m/s 2m 1s 1 m/s 1.5 m/s 4 N (0, 0.2)

Table 4.1: IDM Parameters

Fig. 4.1: Space Time Diagram of IDM control

The evaluation is run for 300s with all the vehicles in the ring road system following IDM

model with the parameters given in 4.1. The space-time and velocity profile plot shows the

occurrence of stop-and-go waves.
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Fig. 4.2: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

FollowerStopper

d1 d2 d3 ∆v ∆x0
1 ∆x0

2 ∆x0
3 U

1.5m/s2 1.0m/s2 0.5m/s2 −3m/s 4.5m 5.25m 6.0m 4.15m/s

Table 4.2: FollowerStopper Parameters

Fig. 4.3: Space Time Diagram of the simulation

The evaluation is run for 600s where the agent’s control law is overridden by IDM for the

first 300s to create stop-and-go waves and for the next 300s the followerstopper controller

law is applied on the agent with the parameters from Table 4.2. The velocity of the agent

tends to converge to the velocity vagent = 4.15m/s.
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Fig. 4.4: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

Proportional Integral (PI)

Fig. 4.5: Space Time Diagram of the simulation

δ sl su vcatch
2m 7m 30m 1m/s

Table 4.3: PI Saturation Parameters

The evaluation is run for 600s where the agent’s control law is overridden by IDM for the

first 300s to create stop-and-go waves and for the next 300s the PI Saturation controller

law is applied on the agent with the parameters from Table 4.3. The velocity of the agent

tends to converge to the velocity vagent = 4.85m/s.
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Fig. 4.6: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

4.4 Single Agent Learned Controllers

4.4.1 DQN Agent: Value Based Agent

The following are the hyperparameters used to train the DQN agent:

HyperParameters
Total Training Timesteps 500k
Horizon 300s
Warmup Period 75s
Deep Q Network Size (128, 128, 128)
Replay Buffer Size 1M
Discount Factor 0.99
Batch Size 32
Learning Rate 0.0001
Target Network Update Frequency 50
Action Set {−1, 1}m/s2

Agent Max Velocity 30 m/s

Table 4.4: DQN Hyperparameters
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Fig. 4.7: Space Time Diagram with DQN control

Fig. 4.8: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

Fig. 4.9: Average Return Plot, Y-axis: Average Return, X-axis: Timesteps
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4.4.2 PPO Agent: Policy Based Agent

The following are the hyperparameters for training the PPO agent:

HyperParameters
Total Training TimeSteps 1M
Horizon 300s
Warmup Period 75s
Policy, Value MLP (256, 256, 256)
Discount Factor 0.99
Batch Size 32
Learning Rate 0.0001
GAE Parameter 0.97
KL Target 0.02
Action Set [−1, 1]m/s2

Agent Max Velocity 30m/s

Table 4.5: PPO Hyperparameters

Fig. 4.10: Space Time Diagram with PPO Control

Fig. 4.11: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles
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Fig. 4.12: Average Return Plot, Y-axis: Average Return, X-axis: Timesteps

4.5 Multi Agent Learned Controllers

4.5.1 Distributed Learning

HyperParameters
Total Training TimeSteps 1M
Horizon 300s
Warmup Period 75s
Policy, Value MLP (512, 512, 512)
Agent Type PPO
Discount Factor 0.99
Batch Size 32
Learning Rate 1e-6
GAE Parameter 0.97
KL Target 0.02
Action Set [−1, 1]m/s2

Agent Max Velocity 30m/s
No. of Agents 3

Table 4.6: Distributed Learning Parameters

Fig. 4.13: Space Time Diagram with Distributed Learning
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Fig. 4.14: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

4.5.2 Fully Independent Learning

HyperParameters
Total Training TimeSteps 1M
Horizon 300s
Warmup Period 75s
Policy, Value MLP (512, 512, 512)
Agent Type PPO
Discount Factor 0.99
Batch Size 32
Learning Rate 1e-6
GAE Parameter 0.97
KL Target 0.02
Action Set [−1, 1]m/s2

Agent Max Velocity 30m/s
No. of Agents 3

Table 4.7: Fully Independent Learning Parameters

Fig. 4.15: Space Time Diagram with Fully Independent Learning
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Fig. 4.16: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

4.5.3 Centralized Training Decentralized Execution

4.5.4 VDN

HyperParameters
Total Training TimeSteps 1M
Horizon 300s
Warmup Period 75s
Discount Factor 0.99
Batch Size 32
Learning Rate 1e-6
LSTM Cell Size 32
Max Sequence Length 10
GAE Parameter 0.97
KL Target 0.02
Action Set [−1, 1]m/s2

Agent Max Velocity 30m/s
No. of Agents 3
Mixer VDN

Table 4.8: VDN Parameters

Fig. 4.17: Space Time Diagram with VDN Control

35



Fig. 4.18: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

4.5.5 QMIX

HyperParameters
Total Training TimeSteps 1M
Horizon 300s
Warmup Period 75s
Discount Factor 0.99
Batch Size 32
Learning Rate 1e-6
LSTM Cell Size 32
Max Sequence Length 10
GAE Parameter 0.97
KL Target 0.02
Action Set [−1, 1]m/s2

Agent Max Velocity 30m/s
No. of Agents 3
Mixer QMIX

Table 4.9: QMIX Parameters

Fig. 4.19: Space Time Diagram with QMIX Control
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Fig. 4.20: Velocity profile of all vehicles, (red) agent vehicle, (gray) environment vehicles

4.6 Simulations

Simulations are stored in the following drive link. The code is in a private repository, so

please contact me so that I can provide access. Git Link. The experiments were conducted

on a server using NVIDIA Tesla V100-PCIE GPU and Intel(R) Xeon(R) Gold 6154 CPU

@ 3.00GHz.

4.7 Conclusion

In this chapter we establish the training and evaluation workflows for an RL agent and

explore the DQN and PPO agents which are value and policy based RL algorithms re-

spectively. Along with these we have seen some model based control laws like IDM, fol-

lowerstopper and PI saturation controller that act like a baseline. We have also explored

the multi-agent system with different strategies of training implemented. Finally we can

compare the results from single-agent and multi-agent systems.

Agent Velocity (m/s)
FollowerStopper 4.15
PI Saturation 4.85
PPO Single Agent 5.2
PPO Distributed Learning 5.1
PPO Fully Independent Learning 2.4
VDN 5.8
QMIX 6

Table 4.10: Saturated Velocity
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4.8 About the simulator

The simulator is built using PyGame library [18] and a snippet of the simulator is shown in

Fig 4.21. The pygame simulator has been integrated with the Ray RLlib library [20]. RLlib

is an open-source reinforcement learning (RL) framework that supports production-level,

massively distributed reinforcement learning workloads while preserving consistent and easy

APIs for a wide range of industry applications. The red color car indicates agent and the

yellow cars indicate environment vehicles. The vehicles move in a clock wise direction and

try to simulate a ring road setting. The movement of these vehicles are configured in such

a way that it produces traffic congestion waves. The environment details are briefed in the

Table 4.6.

Fig. 4.21: Snapshot of the Simulator

Simulation Settings
Ltrack 260m
Lvehicle 5m
Pixel Factor 10 pixels per m
Frame rate 10 FPS
Total number of vehicles 22

Table 4.11: Simulation Setting
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Chapter 5

Conclusion and Future Work

We have successfully integrated the QMIX and VDN multi-agent algorithms into the ring

road system and have extracted results which are as expected. This is the first ever work

that combined CTDE algorithms with closed traffic systems like ring road. Moreover we

have also implemented the two extremes of multi-agent reinforcement learning i.e inde-

pendent agent learning and distributed learning. Overall the ring road scenario has been

explored in the decentralized and centralized multi-agent setting and the results are promis-

ing.

Moving forward we expect to do the same with the highway scenario by integrating it with

the Ray RLlib library and then applying CTDE algorithms for improved co-ordination

within the multi-agent system and also to improve collision avoidance as an intelligent

system.
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