Covariance-Driven Graph Embedding for Real-Time Traffic Prediction
A traffic prediction model leveraging temporal graph structures to model spatial and temporal dependencies within traffic networks. This framework utilizes covariance-driven feature analysis, eigenvalue decomposition, and attention mechanisms to capture dynamic patterns, enabling accurate and scalable traffic forecasting. Tested on real-world datasets like SZ-Taxi and Los-Loop, it outperforms traditional models in accuracy and robustness.
Project Report: Report
Project Slide Deck: Slides
Getting Started
Follow the steps below to run this project locally for development and testing.
Prerequisites
Ensure the following libraries and frameworks are installed:
- PyTorch
- NumPy
- Matplotlib
Installation
- Clone the repository:
git clone https://github.com/Vamsi995/Covariance-Temporal-GCN-for-Traffic-Forecasting.git
cd Covariance-Temporal-GCN-for-Traffic-Forecasting
- Install Dependencies:
pip install -r requirements.txt
Usage
- Train and evaluate the model:
python train.py --config los_loop --hidden_dim 32 --epochs 100
- Run evaluations:
python evaluate.py --dataset sz_taxi --hidden_dim 32 --weights_path ../cvtgcn.pkl
Datasets
The model is validated on:
- SZ-Taxi: 156 major roads in Shenzhen, traffic speeds sampled every 15 minutes.
- Los-Loop: 207 sensors in Los Angeles highways, data sampled every 5 minutes.
SZ-Taxi | Los-Loop |
---|---|
![]() |
![]() |
Results
Accuracy | RMSE |
---|---|
![]() |
![]() |
TGCN - SZ-Taxi | cVTGCN - SZ-Taxi |
---|---|
![]() |
![]() |
TGCN - Los-Loop | cVTGCN - Los-Loop |
---|---|
![]() |
![]() |
Built With
- PyTorch - Deep Learning Framework
- SpatioTemporal Neural Networks
- TGCN